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Investigators in numerous organization studies disciplines are concerned about
the low statistical power of moderated multiple regression (MMR) to detect effects
of categorical moderator variables. The authors provide a theoretical approxima-
tion to the power of MMR. The theoretical result confirms, synthesizes, and ex-
tends previous Monte Carlo research on factors that affect the power of MMR tests
of categorical moderator variables and the low power of MMR in typical research
situations. The authors develop and describe a computer program, which is avail-
able on the Internet, that allows researchers to approximate the power of MMR to
detect the effects of categorical moderator variables given user-input information
(e.g., sample size, reliability of measurement). The approximation also allows in-
vestigators to determine the effects of violating certain assumptions required for
MMR. Given the typically low power of MMR, researchers are encouraged to use
the computer program to approximate power while planning their research design
and methodology.

Researchers in numerous organization studies disciplines are interested in estimating
interactive effects involving a categorical and a continuous variable. For example, dif-
ferential prediction is operationalized as an interaction between ethnicity (e.g., minor-
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ity, nonminority) and test scores (e.g., general cognitive ability) on a measure of per-
formance (e.g., supervisory ratings) (Cleary, 1968). If differential prediction is found,
ethnicity is labeled a “moderator” of the relationship between test scores and perfor-
mance. Gender is another illustration of a categorical variable whose moderating
effect is of interest in several organization studies disciplines. Numerous additional
examples were reviewed recently by Aguinis, Beaty, Boik, and Pierce (2000).

Moderated Multiple Regression (MMR)

The moderating effect of a categorical variable on the relationship between a con-
tinuous predictor and a continuous criterion is typically estimated using MMR.
Assume that X is a continuous predictor variable (e.g., preemployment test scores), Y a
continuous criterion variable (e.g., supervisory ratings of performance), and Z a cate-
gorical predictor variable hypothesized to be a moderator (e.g., gender, dummy coded
1 = men and 2 = women). Equation 1 shows the linear regression model for predicting
Y from X, Z, and the interaction between X and Z (i.e., moderating effect of Z) repre-
sented by the X • Z product term (Aiken & West, 1991; Cohen & Cohen, 1983;
Saunders, 1956):

Y = β0 + β1X + β2Z + β3X • Z + ε,

where β0 is the intercept, β1 is the regression coefficient for X, β2 is the regression coef-
ficient for Z, β3 is the regression coefficient for the product term that carries informa-
tion about the interaction between X and Z, and ε is a normally distributed random error
term. Rejecting the null hypothesis H0 that the product term’s regression coefficient is
zero indicates the presence of a moderating or interaction effect. Stated differently,
rejecting this null hypothesis indicates that the regression of Y on X is unequal across
levels of Z (e.g., male and female subgroups). Note that although this illustration
addresses a binary moderator variable (i.e., two levels), the MMR model allows the
categorical moderator to take on any number of levels (e.g., a moderator with three
levels could be ethnicity coded with African American, Latino/Latina, and White
categories).

Statistical Power Problems With MMR

MMR is widely used to test hypotheses regarding the effects of categorical modera-
tor variables in organization studies (e.g., Bobko & Russell, 1994), as well other fields
including education (Aguinis, Nesler, Quigley, Lee, & Tedeschi, 1996), marketing (e g.,
Mason & Perreault, 1991), and sociology (e.g., Smith, & Sasaki, 1979), among others.

Despite its pervasive use, researchers have lamented the low statistical power of
MMR for nearly three decades (Aguinis, 1995; Aguinis, Bommer, & Pierce, 1996;
McClelland & Judd, 1993; Zedeck, 1971). When MMR analyses are conducted at low
levels of statistical power, researchers who fail to find support for their hypotheses
regarding moderating effects do not know whether (a) their hypotheses are incorrect,
or (b) their hypotheses are correct, but they failed to detect the moderating effect. This
situation creates great uncertainty in theory development involving hypothesized
moderating effects. Uncertainty regarding the presence of moderating effects is partic-
ularly serious because moderator variables are considered to be “at the very heart of
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the scientific enterprise” (Hall & Rosenthal, 1991, p. 447) and to serve as indicators of
a field’s scientific advancement and maturity (Hall & Rosenthal, 1991).1

The following factors have been identified as culprits for the typical low power of
MMR: (a) reduced variance in the predictor variables (McClelland & Judd, 1993, also
referred to as “range restriction” by Aguinis & Stone-Romero, 1997), (b) error vari-
ance heterogeneity across moderator-based subgroups (Alexander & DeShon, 1994),
(c) measurement error (Busemeyer & Jones, 1983), (d) small total sample size (e.g.,
Alexander & DeShon, 1994), and (e) unequal sample size across the moderator-based
subgroups (Stone-Romero, Alliger, & Aguinis, 1994) (see Aguinis, 1995, and
Aguinis & Pierce, 1998a, for reviews). In practice, however, researchers often have lit-
tle control over the size of their samples or the reliability levels of their measures.
Thus, it is often the case that researchers conduct their MMR analyses under low
power conditions. As a result, researchers may erroneously conclude that there is no
moderating effect.

Given that most of the factors known to affect the power of MMR are not under the
control of researchers and that researchers may not be aware of the low power of MMR
in the sample at hand, Aguinis and colleagues (Aguinis & Pierce, 1998b; Aguinis,
Pierce, & Stone-Romero, 1994) developed computer programs to estimate the power
of MMR. These programs allow researchers to estimate the power of MMR tests for
specific situations (e.g., large vs. small moderating effect magnitude). Despite the fact
that these programs are available and useful to researchers in the quest for moderating
effects, they suffer from five limitations. These limitations exist because the programs
are based on algorithms derived from empirical (i.e., Monte Carlo) studies (Aguinis &
Pierce, 1998b, is based on Aguinis & Stone-Romero, 1997; and Aguinis et al., 1994, is
based on Stone-Romero et al., 1994).

The first limitation is that these programs do not include all the factors known to
affect the power of MMR. More specifically, they assume that the measures of Y, X,
and Z are free from measurement error. This is a tenable assumption for the categorical
moderator Z but untenable for the predictor X and the criterion Y.

The second limitation of these programs is that the Monte Carlo studies on which
they are based included only a limited range of values for factors affecting the power of
MMR. For instance, Aguinis and Stone-Romero (1997) used values for total sample
sizes of 60 and 300. Thus, the program by Aguinis and Pierce (1998b) based on the
simulation results by Aguinis and Stone-Romero might not provide accurate power
estimates for situations having sample size values far from 60 or 300. In addition, the
Aguinis and Stone-Romero simulation did not include a negative relationship between
X and Y for any of the moderator-based subgroups. Although these relationships are
typically positive in the context of educational and preemployment testing, this is not
the case in other research areas. For example, a health psychologist might want to test
the moderating effect of gender on the negative relationship between the predictor
“optimism” and the criterion “time to recover from surgery.” As will be illustrated later
in this article, using computer programs based on Monte Carlo simulation results in
which certain value ranges were not included (e.g., negative correlations) can lead to
inaccurate power estimates.

The third limitation of the currently available programs to compute the power of
MMR is that restriction on X is assumed to take on only the simplest form of trunca-
tion. That is, the programs allow users to specify whether X scores are truncated at a
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specific cutoff point. This truncation is known to lower the power of MMR when X is
normally distributed (Aguinis & Stone-Romero, 1997). However, simple truncation is
only one of many situations that result in sample variances being smaller than popula-
tion variances. For instance, in many situations, the probability that an individual will
be selected in a sample does not depend only on his or her standing on variable X but
also on his or her standing regarding other measured and unmeasured variables
(Aguinis & Whitehead, 1997). More precisely, in educational and preemployment
testing situations, many of the top scorers turn down an offer, so there might not be a
precise score on X above which individuals have a higher probability of being included
in the sample (Murphy, 1986). In short, differences between the sample and population
variances for X might be due to a more complex sampling restriction mechanism, and
the available programs to compute power do not allow for this perhaps more frequent
research scenario.

The fourth limitation is that investigators can only compute power in situations in
which the categorical moderator has two levels. This is a useful feature for researchers
interested in testing the effects of binary moderator variables such as gender. However,
there are many research situations in which the categorical moderator takes on more
than two values (e.g., ethnicity coded using African American, Latino/Latina, and
White categories). Although two levels are very frequently observed, researchers
might also be interested in investigating the effects of moderators with more than two
categories. However, at present there is no tool available to compute the power of
MMR in these research situations.

Finally, the fifth limitation of existing programs is that they include situations with
one continuous predictor X and one categorical moderator. Thus, existing programs do
not allow researchers to compute the power of MMR in situations including two or
more categorical moderator variables. One such common situation is an MMR model
including the categorical moderators ethnicity and gender (cf. Aguinis et al., 2000). In
such situations, a researcher might wish to compute the power to detect the X by eth-
nicity interaction, the X by gender interaction, and the ethnicity by gender interaction.
In addition, if an interaction is expected, then a researcher might wish to compute the
power to detect interaction contrasts among the Y on X slopes (see Boik, 1979, 1993,
for a discussion of main and interaction effect contrasts). Computing power for these
types of effects is not possible with the programs available at present.

Present Study

Given the limitations of previous efforts to produce highly accurate estimates of the
power of MMR to detect the effects of categorical moderator variables, the goal of the
present article is to develop a theory-based solution for approximating power. Over-
coming limitations of previous empirically based research, we offer a theoretical
result that allows researchers to approximate the power of MMR. First, we describe
the theoretical approximation. Second, we present results of a Monte Carlo simula-
tion showing its accuracy. Third, we describe a user-friendly computer program
(MMRPOWER) available on the World Wide Web that we developed to implement the
theoretical power approximation given user-input values. Thus, MMRPOWER allows
users to compute power given their precise expected or actual situation (e.g., total sam-
ple size, sample sizes in each of the moderator-based subgroups, measurement error
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for X and Y in each of the moderator-based subgroups). Finally, we use MMRPOWER
to generate values for a number of typical situations in organization studies to examine
the relative effects of the various factors that influence power.

In the sections that follow, we use the term power as a synonym of power function,
which is the probability of rejecting the null hypothesis H0 given specified values for
all of the parameters (Casella & Berger, 2002). When H0 is true and the homogeneity of
error variance assumption is satisfied, then power equals the nominal preset rejection
rate α (also referred to as Type I error rate or test size). However, when H0 is true and
the homogeneity assumption is not satisfied, then power can be greater or smaller than
nominal α. Thus, as we discuss later in more detail, MMR should not be used when the
homogeneity of error variance assumption is violated (Aguinis, Petersen, & Pierce,
1999; Aguinis & Pierce, 1998a).

An Analytic Approximation
to the Power of MMR

Assumptions of the Model

Appendix A describes the assumptions used in developing the analytic approxima-
tion. Briefly, it is assumed that either X and/or Y could be measured with error. Regard-
less of the reliability of X and Y, it is assumed that a normal linear regression model
holds for Y conditional on X, where Y and X are the observable scores rather than the
true scores. This differs from the conventional errors-in-variables model in which Ytrue

conditional on Xtrue is assumed to follow a regression model (Brown & Fuller, 1990;
Carroll & Ruppert, 1995). The MMR model is more appropriate when interest is in the
relationship among the observable X and Y scores.

The analytic approximation allows for sampling restrictions that lead to a differ-
ence between the expected sample variance of X and the population variance of X. We
use the term variance multiplying factor to refer to the expected sample variance of X
divided by population variance of X. This ratio need not be the same in each moderator-
based subgroup. Variance multiplying factors that differ from 1 can arise because of
truncation (i.e., scores are included in the sample only if they are above or below a spe-
cific cutoff point) or other sampling restrictions. If X is normally distributed, then
MMRPOWER will compute the variance multiplying factor. If X is not normally dis-
tributed, or if a sampling restriction other than truncation holds, then the user needs to
input a value for the variance multiplying factor.

Factors Affecting Power

Appendix B provides a technical presentation of the null hypothesis, the MMR
model, and the F statistic used in assessing the presence of a moderating effect in
MMR. Appendix B defines the various components that are used in deriving the ana-
lytic approximation to power in Appendix C. Appendix C presents (a) the distribution
of the F statistic conditional on X and (b) an approximation to the unconditional distri-
bution of the F statistic. Note that Gatsonis and Sampson (1989) discussed the distinc-
tion between conditional and unconditional power in a simpler model than that consid-
ered here.
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Theorem 2 in Appendix C gives an analytic expression for the power of the MMR F
test. The expression is technical, but this does not limit the practical usefulness of the
theorem. The required computations are readily performed using MMRPOWER (see
the Computer Program section below).

An examination of the analytic power approximation given in Theorem 2 reveals
that the power of the MMR F test depends on the following quantities: (a) preset nomi-
nal test size, α; (b) number of moderator-based subpopulations, k; (c) sample sizes
across moderator-based subgroups, nj for j = 1, . . . , k; (d) difference in slopes of Y on X
across moderator-based subpopulations, βj – βk for j = 1, . . . , k – 1; (e) reliabilities (e.g.,
Cronbach’s alpha, split-half, test-retest) for Y in the k moderator-based
subpopulations, αy,j for j = 1, . . . , k; (f) reliabilities for X in the k moderator-based
subpopulations, αy,j for j = 1, . . . , k; (g) correlations between X and Y in each of the
moderator-based subpopulations, ρj for j = 1, . . . , k; (h) marginal variance of Y in the k
subpopulations, σ y j,

2 , for j = 1, . . . , k; (i) variance of X in the k subpopulations, σ x j,
2 for

j = 1, . . . , k; and (j) ratio of expected sample variance of X/population variance of X.
Note, however, that some of these factors are not independent. For example, slopes are
functions of reliabilities, correlations, marginal variances of Y, and variances of X.
That is, for slopes to change, at least one of these factors also needs to change.

Theorem 2 provides a theory-based synthesis of previous research regarding the
variables that affect the power of MMR. For instance, consider the following vari-
ables: (a) sampling restriction on X (Aguinis & Stone-Romero, 1997), (b) measure-
ment error (e.g., Busemeyer & Jones, 1983), and (c) unequal sample sizes across mod-
erator-based subgroups (Stone-Romero et al., 1994). Sampling restriction is
incorporated by allowing the expected sample variance of X to differ from the popula-
tion variance of X. Stated differently, the analytic solution goes beyond simple trunca-
tion (e.g., an individual is included in the sample if his or her X score is above a specific
cutoff point) and addresses the more general issue that differences between sample and
population variances affect power (McClelland & Judd, 1993). Measurement error is
incorporated by allowing reliabilities for X and Y to differ across moderator-based sub-
groups. Sample sizes across moderator-based subgroups, which are related to the vari-
ance of the moderator variable, also are explicitly included in the model.2

Theorem 2 also reveals that power decreases as the reliability of X and/or Y
decreases. Furthermore, to a first-order approximation and if reliabilities are homoge-
neous across moderator-based subgroups, power depends on the reliabilities αy and αx

only through their product αyαx. Accordingly, power is affected by measurement error
in X and Y in a symmetric fashion. For example, holding constant all other factors
affecting power, the power of MMR will be approximately the same for the case (a)
αy = .80 and αx = .80 (i.e., αy αx = .64) as for the case (b) αy = .90 and αx = .71 (i.e., αy

αx = .639).
Also, Theorem 2 clarifies the effects of X and Y variance heterogeneity on power.

More precisely, holding constant all other factors shown in the theorem and given a sit-
uation with two moderator-based subgroups, σx,1, σx,2, σy,1, and σy,2 affect power only
through the ratios σx,1/σx,2 and σy,1/σy,2. This effect is illustrated later in the article in the
section Relative Impact of Factors Affecting Power.

Finally, Theorem 2 also provides theoretical evidence that complements previous
empirical results regarding the interactive effects of various factors that affect the
power of MMR (Aguinis & Stone-Romero, 1997; Stone-Romero et al., 1994). The
presence of interactive effects on power suggests that even if the value regarding one
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factor (e.g., total sample size) is favorable in terms of power (i.e., large), the existence
of at least one other factor with an unfavorable value (e.g., poor reliability for X ) may
reduce power substantially. Thus, an unfavorable condition regarding any of the fac-
tors known to affect the power of MMR imposes a ceiling for the power of the F test.
These interactive effects explain the typical concerns regarding the low power of
MMR and the all-too-frequent failures to find so-called elusive moderating effects
(Zedeck, 1971).

Accuracy of the Power Approximation

We conducted a Monte Carlo simulation to evaluate the power approximation shown
in Theorem 2. The simulation was not intended to examine thoroughly a large number
of conditions regarding the factors known to affect power (e.g., sample/population
variances, reliabilities, sample size). Rather, our goal was to assess the accuracy of
Theorem 2. Thus, we examined a set of diverse conditions considered to be typical in
organization studies rather than a full factorial including all possible combinations of
independent variable values included in the design. We implemented the simulation
using a MATLAB 5 (http://www.mathworks.com/products/matlab) program.

Independent Variables

The simulation manipulated the following variables: (a) number of moderator-
based subpopulations, (b) total sample size, (c) sample size across the moderator-based
subgroups, (d) true score correlations between X and Y for the moderator-based
subpopulations, (e) sampling restriction on X, (f) variances of X and Y, (g) reliabilities
of X and Y, and (h) deviation from normality for X. Table 1 shows the 26 combinations
of independent variable values, or cases, included in the simulation. Each of the 26
cases was sampled 10,000 times.

Commentary is needed regarding the manipulated variables. First, we chose to
manipulate correlations as opposed to slopes. Although Appendix C shows that the
moderating effect is defined as differences in slopes across the values of the moderator
Z and the null hypothesis regarding the presence of the moderating effect is based on
differences in slopes, the simulation varied correlations so as to make the results more
easily interpretable. In other words, the standardized correlation metric might be more
familiar and easier to interpret by most researchers than the unstandardized regression
coefficient metric.

Second, regarding the X distribution, we sampled X scores from either a normal or a
beta (1.5, 3.0) distribution. This beta distribution has a skewness coefficient of .51 and
a kurtosis coefficient of –.46.

Third, regarding sampling restriction on X, we implemented the following four
types of restriction on the normal and beta distributions: (a) left truncation (i.e., scores
are sampled if they are above a specific cutoff point), (b) right truncation (i.e., scores
are sampled only if they are below a specific cutoff point), (c) sparse left (i.e., low
scores are sparsely sampled, and high scores are more densely sampled), and
(d) sparse right (i.e., high scores are sparsely sampled, and low scores are more
densely sampled). These four types of sampling restrictions are defined mathemati-
cally in Appendix C. Each form of sampling restriction was crossed with four values of
a truncation-like parameter (i.e., T = .00, .25, .50, and .75), which is the proportion of
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Table 1
Independent Variable Values Used in the Simulation Assessing the Accuracy of the Analytic Power Approximation

Case Number k nj ρj T σx,j σy,j αx,j αy,j

1 2 50, 50 .10, .30 .75, .75 .40, .40 .40, .40 .70, .70 .70, .70
2 2 30, 70 .10, .50 .75, .50 .40, 1.2 .40, 2.0 .70, .90 .70, .90
3 2 10, 90 .10, .70 .75, .25 .40, 2.0 .40, 1.2 .90, .70 .90, .70
4 2 125, 125 .30, .10 .50, .75 1.2, .40 2.0, .40 .90, .90 .90, .90
5 2 75, 175 .30, .50 .50, .50 1.2, 1.2 1.2, 2.0 .70, .70 .70, .70
6 2 25, 225 .30, .70 .50, .25 1.2, 2.0 2.0, 1.2 .70, .90 .70, .90
7 2 200, 200 .50, .10 .25, .75 2.0, .40 1.2, .40 .90, .70 .90, .70
8 2 120, 280 .50, .30 .25, .50 2.0, 1.2 2.0, .40 .90, .90 .90, .90
9 2 40, 360 .50, .70 .25, .25 2.0, 2.0 2.0, 1.2 .70, .90 .70, .90

10 2 125, 125 .10, .50 0, 0 1.2, 1.2 2.0, 2.0 .90, .90 .90, .90
11 2 125, 125 .30, .30 0, 0 1.2, 1.2 2.0, 2.0 .90, .90 .90, .90
12 2 50, 50 .10, .30 .75, .75 .40, .40 .40, .40 .70, .70 .70, .70
13 2 75, 175 .30, .50 .50, .50 1.2, 1.2 1.2, 2.0 .70, .70 .70, .70
14 3 25, 25, 50 .10, .30, .50 .75, .75, .75 .40, .40, 1.2 .40, 1.2, 2.0 .70, .70, .70 .70, .70, .70
15 3 30, 30, 40 .10, .50, .70 .75, .75, .50 .40, 1.2, 2.0 .40, .40, 1.2 .70, .90, .70 .70, .90, .70
16 3 35, 35, 30 .30, .10, .50 .75, .50, .25 .40, 2.0, 2.0 1.2, 2.0, .40 .70, .90, .90 .70, .90, .90
17 3 25, 75, 150 .30, .30, .70 .50, .75, .25 .40, 1.2, 1.2 2.0, 1.2, .40 .90, .70, .70 .90, .70, .70
18 3 50, 75, 125 .50, .10, .70 .50, .50, .25 1.2, .40, 2.0 .40, 1.2, 1.2 .90, .90, .90 .90, .90, .90
19 3 75, 75, 100 .50, .10, .30 .50, .25, .25 2.0, .40, 1.2 1.2, 1.2, .40 .90, .90, .70 .90, .90, .70
20 3 50, 75, 275 .70, .30, .50 .25, .75, .50 1.2, 2.0, .40 2.0, 2.0, .40 .70, .70, .90 .70, .70, .90
21 3 75, 75, 250 .70, .50, .10 .25, .50, .25 2.0, 2.0, .40 1.2, .40, 2.0 .70, .90, .90 .70, .90, .90
22 3 90, 90, 220 .10, .70, .50 .25, .50, .75 1.2, 1.2, .40 2.0, 1.2, .40 .90, .70, .70 .90, .70, .70
23 3 75, 75, 100 .10, .30, .50 0, 0, 0 1.2, 1.2, 1.2 2.0, 2.0, 2.0 .90, .90, .90 .90, .90, .90
24 3 75, 75, 100 .30, .30, .30 0, 0, 0 1.2, 1.2, 1.2 2.0, 2.0, 2.0 .90, .90, .90 .90, .90, .90
25 3 25, 25, 50 .10, .30, .50 .75, .75, .75 .40, .40, 1.2 .40, 1.2, 2.0 .70, .70, .70 .70, .70, .70
26 3 75, 75, 100 .50, .10, .30 .50, .25, .25 2.0, .40, 1.2 1.2, 1.2, .40 .90, .90, .70 .90, .90, .70

Note. k = number of moderator-based subpopulations; nj = sample size in each moderator-based subgroup (i.e., total sample size = Σnj); ρj = true score correla-
tions between X and Y for each moderator-based subpopulation;T = truncation proportion on X for each moderator-based subgroup (i.e., proportion of scores that
cannot be included in the sample);σx,j = true score standard deviation for X;and σy,j = true score standard deviation for Y for each moderator-based subpopulation;
αy,j = reliability for Y; αx,j = reliability for X for each moderator-based subpopulation.
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the population that cannot be sampled due to restriction. Thus, the manipulation of the
sampling mechanism for X led to various degrees of skewness, kurtosis, and X variance
multiplying factors (i.e., expected sample variance of X/population variance of X).
Tables showing the values for skewness, kurtosis, and variance multiplying factors
associated with each combination of sampling mechanism and T for the normal and
the beta (i.e., nonnormal) distributions are available from the authors on request.

Independent variable values. Commentary is needed regarding the choice for the
various independent variable values used in the simulation and shown in Table 1. Once
again, the goal of this simulation was to assess the accuracy of the analytically derived
solution to approximate power. Thus, we were not attempting to include every situa-
tion encountered by researchers or to generate extensive power tables. Investigators
can generate their own custom power values using the computer program that imple-
ments the analytic solution (see the Computer Program section below).

We chose the independent variable values according to the following rationale.
First, regarding the number of moderator-based subpopulations, we chose the values
of k = 2 and 3. This was based on a literature review by Aguinis et al. (2000) concluding
that virtually all of the 616 MMR tests of categorical moderator variables reported in
major organization studies journals over the past 30 years included moderators with
two or three levels.3

Second, regarding total sample size, we chose values ranging from 100 to 400. This
choice was based on Jaccard and Wan’s (1995) review of American Psychological
Association (APA) journals indicating that the median sample size is 175.

Third, regarding sample size across the moderator-based subgroups, we divided the
total sample size into two or three subgroups based on proportions ranging from .10 to .
50. The rationale was that researchers might find situations in which the proportion of
scores in one subgroup is as low as .10 of the total sample. On the other hand, there
might be situations in which the sample size is fairly equal across moderator-based
subgroups (i.e., a proportion of .50). Thus, a range of .10 to .50 covers most typical
research situations.

Fourth, regarding the magnitude of the moderating effect, we chose various combi-
nations of correlations ranging from .10 to .70 across moderator-based
subpopulations. The rationale was that these are the values typically observed,
although .70 is less usual, in organization studies and other social science fields (e.g.,
political science, psychology). For example, Cohen (1988) defined effects of .10, .30,
and .50 as small, medium, and large, respectively. We also included negative correla-
tions within this range (i.e., Cases 12, 13, 25, and 26 in Table 1). Note, however, that
the corresponding population correlations based on observable scores may differ from
population correlations based on true scores because correlations between observable
scores are affected by measurement error.

Fifth, regarding the truncation proportion on X (i.e., T ), we chose values of .00, .25,
.50, and .75. The rationale was that these values cover a range from T = 0, in which all
population scores can be included in the samples, to T = .75, in which only 25% of the
population scores can be included in the sample. Implementing truncation on the nor-
mal and beta distributions led to variance multiplying factors (i.e., expected sample
variance of X/population variance of X ) ranging from 1.00 to .17. Thus, the simulation
included situations ranging from no differences between sample and population vari-
ances to situations in which there is very severe variance restriction.
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Sixth, the values for the standard deviation of X and Y were chosen after conducting
a cursory review of several APA journals. Our review suggested that published studies
using Likert-type scales with five and seven anchors yield standard deviations in the .40
to 2.0 range. Thus, this guided our choice for the standard deviation values.

Finally, regarding reliabilities for X and Y, we chose the values .70 and .90. Similar
to Jaccard and Wan (1995), the rationale was that .70 is considered to be the lower
bound of acceptable reliability levels (Nunnally & Bernstein, 1994), and .90 is a desir-
able level that serves as a de facto upper-bound level in many areas of organization
studies and other social sciences.

Dependent Variable

The dependent variable, power, was the proportion of times out of each set of
10,000 trials that the null hypothesis of no moderating effect was rejected. We com-
puted this proportion for each of the 26 cases shown in Table 1 crossed with each of the
four sampling mechanisms (i.e., left and right truncation and sparse left and right) and
the two types of underlying X distributions (i.e., normal and beta) described above and
defined mathematically in Appendix C. We also computed an approximate (i.e., ana-
lytically derived) power value using Theorem 2 as implemented by the computer pro-
gram MMRPOWER (see Computer Program section below).

Results and Discussion

Tables 2 and 3 show (a) the proportion of times the null hypothesis was empirically
rejected, and (b) the power approximation yielded by Theorem 2 for each of the 26
cases shown in Table 1 crossed with the four sampling mechanisms. Table 2 shows
results pertaining to an underlying normal X distribution, and Table 3 shows results for
an underlying beta (i.e., nonnormal) X distribution. Tables 2 and 3 indicate that the
empirical and theoretical proportions are virtually identical for every condition. The
difference between the analytically derived power approximation and the empirically
derived rejection rates was in no case greater than |.019|. The mean absolute deviation
between the simulation and theory-based power values is .0036 for Table 2 and .0037
for Table 3. Given the statistical power metric (i.e., ranging from 0 to 1.00), the differ-
ences between the empirical and analytic values are negligible.

Comparison with previous empirically based algorithms to estimate power. We
next compared analytically derived power estimates with those generated by the
Aguinis and Pierce (1998b) program. Recall that, in contrast to the present analytic
solution, the Aguinis and Pierce program suffers from certain limitations (e.g., does
not allow for the consideration of measurement error, only allows for power estimation
for binary moderator variables). Because of these limitations, the power estimates gen-
erated using the Aguinis and Pierce program assume that (a) reliabilities are 1.0 for X
and Y across the two moderator-based subgroups, (b) the variance and truncation for X
are identical across the two moderator-based subgroups, (c) the variance for Y is identi-
cal across the two moderator-based subgroups, and (d) X and Y scores follow a
bivariate normal distribution. Because the Aguinis and Pierce program does not allow
for the specification of as many variables as the present analytic approximation, in the
comparison we could only vary (a) total sample size, (b) sample sizes across moderator-
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based subgroups, (c) correlations between X and Y for each moderator-based
subpopulation, and (d) truncation proportion. Table 4 shows results of this comparison.

Table 4 shows that, as was shown in Tables 2 and 3, the analytic approximation is
virtually identical to the simulation-based results. In addition, Table 4 shows that,
under restrictive assumptions such as lack of measurement error across
subpopulations, the Aguinis and Pierce (1998b) program power estimate also was
close to the simulation-based value in several conditions. For instance, for Cases 1
through 3, the difference between the simulation and the Aguinis and Pierce power
values ranged from –.049 to .021. Note, however, that these cases include values that
fall within the range of the simulation study on which the Aguinis and Pierce program
was based (i.e., Aguinis & Stone-Romero, 1997). Thus, it was expected that the
Aguinis and Pierce power estimate would be fairly accurate for these situations.
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Table 2
Comparison of Empirical and Analytic (i.e., using Theorem 2)

Power Values (underlying normal distribution for X )

Case Left Right Theoretical Sparse Sparse Theoretical
Number Truncation Truncation Approximation Left Right Approximation

1 .061 .060 .063 .077 .071 .076
2 .000 .001 .000 .002 .002 .001
3 .000 .000 .000 .000 .000 .000
4 .002 .002 .001 .008 .007 .007
5 .169 .166 .161 .313 .311 .311
6 .307 .309 .317 .313 .305 .317
7 .021 .021 .019 .070 .066 .065
8 .898 .896 .898 .984 .983 .985
9 .295 .295 .288 .278 .295 .291

10 .840 .840 .842 .846 .841 .842
11 .048 .048 .050 .046 .048 .050
12 .058 .063 .063 .080 .073 .076
13 .165 .162 .161 .308 .319 .311
14 .007 .005 .005 .007 .007 .005
15 .010 .008 .007 .021 .019 .017
16 .070 .069 .066 .082 .081 .077
17 .423 .420 .411 .498 .500 .485
18 .121 .122 .113 .220 .214 .204
19 .303 .300 .301 .473 .468 .467
20 .602 .597 .594 .782 .773 .772
21 .101 .100 .102 .181 .189 .182
22 .312 .311 .308 .448 .445 .446
23 .586 .586 .583 .585 .591 .583
24 .052 .050 .050 .053 .050 .050
25 .006 .006 .005 .005 .006 .005
26 .299 .301 .301 .472 .464 .467

Note. Cases are defined in Table 1. Left truncation and right truncation = empirical power values
(i.e., proportion of times the null hypothesis of no moderating effect was empirically rejected) im-
plementing left truncation and right truncation sampling mechanisms defined in Appendix C; theo-
retical approximation = power approximate using Theorem 2 as implemented by the program
MMRPOWER; sparse left and sparse right = empirical power values implementing sparse left and
sparse right sampling restriction mechanisms defined in Appendix C.



Alternatively, Cases 4 and 5 show situations including values falling outside of the
range of the simulation work on which the Aguinis and Pierce (1998b) program was
based (i.e., for Case 4, there is a negative correlation, and for Case 5, the correlations
are greater than .80). In these situations, the difference between the simulation and the
Aguinis and Pierce power values was greater. In Case 4, the Aguinis and Pierce pro-
gram yielded a negatively biased value (i.e., –.170), and in Case 5, the program yielded
a positively biased value (i.e., .789). These discrepancies illustrate one of the weak-
nesses described in the introduction section regarding the available computer pro-
grams to estimate power: Because they are based on Monte Carlo data, their accuracy
is confined only to values similar to those used in the simulation on which the pro-
grams are based. The Aguinis and Pierce program is based on the Aguinis and
Stone-Romero (1997) simulation, which did not include correlations lower than .20 or
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Table 3
Comparison of Empirical and Analytic (i.e., using Theorem 2)

Power Values (underlying beta [1.5, 3.0] distribution for X )

Left Truncation Right Truncation Sparse Left Sparse Right
Case
Number Simulation Theory Simulation Theory Simulation Theory Simulation Theory

1 .064 .065 .051 .053 .085 .084 .055 .062
2 .000 .000 .000 .000 .004 .002 .000 .000
3 .000 .000 .000 .000 .000 .000 .000 .000
4 .001 .001 .000 .000 .013 .012 .001 .000
5 .225 .217 .080 .077 .400 .391 .228 .228
6 .308 .318 .308 .319 .308 .316 .307 .318
7 .025 .023 .002 .002 .105 .101 .016 .016
8 .958 .958 .695 .690 .991 .993 .969 .969
9 .297 .290 .295 .287 .300 .291 .289 .290

10 .841 .842 .841 .842 .841 .842 .847 .842
11 .045 .050 .050 .050 .050 .050 .049 .050
12 .064 .065 .053 .053 .085 .084 .058 .062
13 .219 .217 .077 .077 .395 .391 .238 .228
14 .007 .005 .005 .004 .008 .006 .005 .005
15 .008 .006 .001 .001 .030 .024 .004 .004
16 .072 .068 .069 .070 .086 .083 .066 .066
17 .456 .444 .381 .372 .535 .520 .466 .453
18 .155 .143 .083 .078 .289 .270 .156 .149
19 .382 .381 .211 .217 .538 .535 .406 .404
20 .675 .667 .384 .378 .826 .822 .661 .657
21 .134 .133 .064 .067 .234 .230 .145 .141
22 .380 .371 .198 .196 .503 .498 .386 .386
23 .590 .583 .590 .583 .590 .583 .590 .583
24 .048 .050 .048 .050 .048 .050 .048 .050
25 .006 .005 .006 .004 .007 .006 .007 .005
26 .392 .381 .220 .217 .540 .535 .401 .404

Note. Cases are defined in Table 1. Left and right truncation = sampling mechanisms based on
truncation defined in Appendix C; sparse left and sparse right = sparse left and sparse right sam-
pling restriction mechanisms defined in Appendix C;simulation = empirical power values (i.e., pro-
portion of times the null hypothesis of no moderating effect was empirically rejected); theory =
power approximate using Theorem 2 as implemented by the program MMRPOWER.



higher than .80. The foregoing example illustrates the superiority of an analytic solu-
tion that can be generalized to any parameter value range.

It is also of interest to approximate power for the cases shown in Table 4 once some
of the Aguinis and Pierce (1998b) assumptions are relaxed. For instance, Case 1
yielded a satisfactory power value (.961 for the Aguinis & Pierce program and .940 for
the simulation; a difference of just .021). Recall that these power values assume perfect
reliability for both X and Y scores for the two moderator-based subgroups. Relaxing
this assumption, we generated a power value via simulation assuming a more realistic
scenario in organization studies in which reliabilities for X and Y are .80 for each of the
two moderator-based subgroups. The resulting simulation power value was .734,
below the recommended value of .80 (Cohen, 1988). Thus, just by relaxing one of the
assumptions (i.e., lack of measurement error), the difference between the Aguinis and
Pierce and the simulation power values increased from .021 to .229. In contrast, the
power value generated using the analytic approximation was .736, a difference of
just .002 from the simulation result. This example shows a second limitation men-
tioned in the introduction section pertaining to previous research attempting to esti-
mate the power of MMR based on empirical work. Once again, computer programs
based on empirically derived algorithms to estimate power (e.g., Aguinis et al., 1994;
Aguinis & Pierce, 1998b) cannot go beyond the empirical work on which they are
based; for instance, if the original research assumed lack of measurement error, so do
the corresponding computer programs. In contrast, the present analytic solution is
based on theory and goes beyond previous empirical work. Consequently, it allows
power values to be approximated based on more realistic conditions (e.g., measure-
ment error for X and Y across moderator-based subgroups, nonnormal X distributions,
range restriction beyond simple truncation on X). In short, researchers using the pres-
ent analytic result have a more generalizable and accurate approximation of power
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Table 4
Comparison of Power Values Based on the Present Analytic

Approximation and the Aguinis and Pierce (A&P) (1998b) Computer Program

Power

Case Analytic
Number nj ρj T Approximation A&P Simulation

1 150, 150 .20, .80 .60 .941 .961 .940
2 50, 100 .20, .40 .00 .228 .184 .233
3 80, 120 .10, .40 .90 .147 .158 .145
4 75, 100 -.40, .40 .20 .989 .816 .986
5 150, 150 .95, .99 .60 .124 .910 .121

Note.nj = sample size in each moderator-based subgroup (i.e., total sample size = n1 + n2);ρj = cor-
relations between X and Y for each moderator-based subpopulation; T = truncation proportion on
X for each moderator-based subgroup (i.e., proportion of scores that cannot be included in the
sample); analytic approximation = power approximate using Theorem 2 as implemented by the
program MMRPOWER; A&P = power value generated using the Aguinis and Pierce (1998b) com-
puter program; simulation = empirical power values (i.e., proportion of times the null hypothesis of
no moderating effect was empirically rejected). The comparison in this table holds k constant at 2
(i.e., the moderator variable has two levels), reliabilities of X and Y constant at 1.00, and variance
of Y constant at 1.00 (i.e., the Aguinis & Pierce, 1998b, program does not allow for variations in k,
reliabilities, and Y variance).



and, consequently, are likely to make more informed conclusions regarding the opera-
tion of moderating effects of categorical variables.

Computer Program

As noted above, we developed a computer program that performs all the necessary
computations required by the theoretical approximation shown in Theorem 2. This
program (MMRPOWER) is available at http://www.math.montana.edu/~rjboik/
power.html. We chose to make MMRPOWER available on the Internet so as to reach
the largest possible number of users regardless of operating system platform (e.g.,
Windows 95/98/NT/2000, Macintosh, OS2). The program was written in FORTRAN
77 and consists of a main program that calls several FORTRAN subprograms and
functions that were originally published in Applied Statistics (a list of the algorithms
used is available from the authors on request).

The first screen of the program prompts the user to provide information regarding
(a) number of moderator-based subgroups (the maximum number handled by the pro-
gram is 20), (b) desired significance level or test size (i.e., preset Type I error rate), (c)
desired test (i.e., overall test of equality of slopes across moderator-based subgroups or
tests of specific contrasts of slopes), and (d) sampling restrictions (i.e., none, sampling
from truncated X normal distributions, or sampling from nonnormal X distributions).
The program also prompts the user to provide information regarding whether the input
format includes correlations based on true scores, correlations based on observable
scores, slopes based on true scores, or slopes based on observable scores.

The second screen of the program prompts the user to input the necessary informa-
tion to compute power. In addition to sample size and reliabilities for each of the mod-
erator-based subgroups, the necessary input varies depending on the choices made on
the first screen. That is, the user is prompted for correlations or slopes based on true or
observable scores for each moderator-based subgroup. In addition, the user is
prompted for the truncation proportion for X (i.e., T ) if truncated normal distributions
were noted on the first screen, no information if no sampling restrictions were noted on
the first screen, and variance multiplying factors (i.e., expected sample variance/popu-
lation variance) if nonnormal X distributions were noted on the first screen. Finally, if
tests of specific contrasts were requested on the first screen, the second screen prompts
the user for contrast coefficients (see Boik, 1979, 1993, for a discussion of main and
interaction effect contrasts).

Needed Input

All the information required by the program is typically available to researchers
(except for truncation and variance multiplying factor information). If the true score
options are chosen, sample-based statistics must be used to estimate parameters. The
program will yield an accurate power value as long as the estimates are accurate.

Information regarding truncation and the variance multiplying factor (when the
sampling mechanism is other than truncation) may not be available. If this information
is not available, we suggest that researchers use an estimate based on relevant litera-
ture. If a literature-based estimate is not available, researchers can input a best-case
scenario (i.e., use a truncation proportion of 0.00 and assume no truncation or a vari-
ance multiplying factor of 1.00 and assume no variance difference between the sample
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and the population) and a worse-case scenario (i.e., use a severe truncation proportion
such as 0.75 or a severe variance multiplying factor of 0.25). Given the absence of
information on truncation and the variance multiplying factor, researchers will know
that the power of their MMR test lies somewhere between the best-case and
worse-case situations.

Relative Impact of Factors Affecting Power

As noted in the introduction section, several empirical studies have examined the
impact of each of the many factors known to affect the power of MMR. Typically, these
Monte Carlo simulations have investigated only the concurrent impact of two or three
factors. For instance, Stone-Romero et al. (1994) only manipulated three
design-related factors: (a) sample size in each of two moderator variable-based sub-
groups, (b) total sample size, and (c) magnitude of moderating effect. Likewise,
Stone-Romero and Anderson (1994) also varied only three factors: (a) total sample
size, (b) unreliability of predictor variable scores, and (c) magnitude of moderating
effect. Another contribution of the present analytic approximation is that, in contrast to
previous empirical work, power values can be easily and concurrently generated for a
diverse set of variables and values. Consequently, we can now gain a better under-
standing of, when other variables are held constant, what is the relative impact of
improving one factor (e.g., increasing total sample size) as compared to improving
conditions regarding another factor (e.g., minimizing restriction on X ).

We present a total of 34 illustrative cases in Tables 5 and 6 to show the relative
impact of the various factors affecting the power of MMR. In Table 5, we illustrate the
effects of total sample size, sample size across moderator-based subgroups, differ-
ences in correlations across moderator-based subgroups, truncation (for the X normal
distribution case) and variance multiplying factor (for the arbitrary X distribution
case), and reliabilities on X and Y.

Regarding Table 5, to make the various comparisons easier to understand, we pres-
ent a situation in which there are two moderator-based subgroups (e.g., gender). Also,
truncation, variance multiplying factor, and X and Y variances (σx = σy = 1.0) are not
varied across the subpopulations (effects of X and Y variance heterogeneity are shown
in Table 6). In addition, because the effects of reliability of X and Y are symmetrical
when reliabilities are homogeneous across moderator-based subgroups, we varied the
product αyαx and not the reliability for each variable. Finally, we also held αyαx con-
stant across the two subgroups.

Case 1 in Table 5 is what could be labeled an “optimal” situation for detecting a
moderating effect. Total sample size is 400 (much larger than the median of 175
reported by Jaccard & Wan, 1995), sample size is equal across the subgroups, there is a
.50 difference between the X – Y correlations across the two subgroups, there is no
restriction on X, X and Y variances are equal across the two subgroups, and the product
of the reliability terms is .81 (i.e., αy = .90 and αx = .90). Not surprisingly, given these
optimal conditions, the power of the MMR test is .998.

Case 6 is what could be labeled an “average” or more typical situation for detecting
a moderating effect. N = 175, the sample sizes ratio across the subgroups is .67 (i.e.,
they are dissimilar but not drastically different), there is a .30 difference between X – Y
correlations across the two subgroups, there is some restriction (i.e., scores can be
sampled from 75% of the range of population scores), variances of X and Y are identi-
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cal across subpopulations, and the product of the reliability terms is .64 (i.e., αy = αx = .
80 across subgroups). The resulting power for what can be considered a more typical
research situation is .203. Given this low value, it is not surprising that moderating
effects have been labeled “elusive” (Zedeck, 1971). If Case 6 indeed represents a sit-
uation faced by the majority of organization science researchers using MMR to test
hypotheses regarding moderating effects of categorical variables, the chances of
rejecting a null hypothesis would be greater if a coin toss were used instead of MMR.

Cases 2 through 5 in Table 5 are follow-ups to the optimal Case 1. We changed the
value for each of the factors from optimal to average without altering the optimal con-
ditions regarding all other factors. For instance, Case 2 shows that decreasing the total
sample size and not having identical sizes across the subgroups decreases power from .
998 to .867, holding all other factors at their optimal value. Case 3 shows that decreas-
ing the difference in correlations from .10 in Subgroup 1 and .60 in Subgroup 2 to .10
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Table 5
Effects of Sample Size, Effect Size, Truncation or Variance
Multiplying Factor, and Reliability on X and Y on Power of

Moderated Multiple Regression for Illustrative Research Situations

Case Number nj ρj T δ xyxy Power

Underlying normal X distribution
1 200, 200 .10, .60 .00 .81 .998
2 105, 70 .10, .60 .00 .81 .867
3 200, 200 .10, .40 .00 .81 .791
4 200, 200 .10, .60 .25 .81 .942
5 200, 200 .10, .60 .00 .64 .988
6 105, 70 .10, .40 .25 .64 .203
7 200, 200 .10, .40 .25 .64 .431
8 105, 70 .10, .60 .25 .64 .494
9 105, 70 .10, .40 .00 .64 .341

10 105, 70 .10, .40 .25 .81 .248
Underlying arbitrary X distribution

11 200, 200 .10, .60 1.00 .81 .998
12 105, 70 .10, .60 1.00 .81 .867
13 200, 200 .10, .40 1.00 .81 .791
14 200, 200 .10, .60 0.75 .81 .987
15 200, 200 .10, .60 1.00 .64 .988
16 105, 70 .10, .40 0.75 .64 .268
17 200, 200 .10, .40 0.75 .64 .562
18 105, 70 .10, .60 0.75 .64 .638
19 105, 70 .10, .40 1.00 .64 .341
20 105, 70 .10, .40 0.75 .81 .329

Note.nj = sample size in each moderator-based subgroup (i.e., total sample size = n1 + n2);ρj = cor-
relations between X and Y for each moderator-based subpopulation; T = truncation proportion on
X for each moderator-based subgroup (i.e., proportion of scores that cannot be included in the
sample) for normal distribution;δ = variance multiplying factor (i.e., expected sample variance of X/
population variance of X ) for arbitrary distribution; αy = reliability for Y and αx = reliability for X;
power = power approximate using Theorem 2 as implemented by the program MMRPOWER.
Power values were approximated using a preset nominal Type I error = .05. It is assumed that σy

(true score standard deviation for Y ) = σx (true score standard deviation for X ) = 1.00 for each
moderator-based subpopulation.



and .40, respectively, decreases power from .998 to .791. Case 4 shows the effect of
adding some restriction (i.e., scores can only be sampled from 75% of the population
score range), and Case 5 shows the effect of adding more measurement error. Rela-
tively speaking, and given the values shown in Cases 2 through 5 in Table 5, the follow-
ing is a rank ordering of factors that affect the power of MMR in order of importance:
(a) moderating effect magnitude, (b) total sample size, (c) sampling restriction on X,
and (d) measurement error. Of course, this rank ordering may change if noticeably dif-
ferent values are chosen as optimal and average for each of the factors.

Table 5 also shows various situations (Cases 7-10) in which there is an average con-
dition regarding all factors, and there is improvement in one factor at a time, from aver-
age to optimal, without altering the other factors. As expected, the pattern of power
improvement is similar to the pattern observed for Cases 2 through 5 regarding power
decrements. Given that conditions are average for all other factors, increasing effect
size and sample size, reducing sampling restriction on X, and improving reliability
increase power, in this respective order.

The bottom half of Table 5 shows a similar pattern of results when normality is not
assumed for the X distribution in assessing the effects of differences between expected
sample variance of X and population variance of X. Effect size and sample size are the
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Table 6
Effects of X and Y Variance Heterogeneity on Power of

Moderated Multiple Regression for Illustrative Research Situations

Case
Number nj ρj xyxy σy,1/σy,2 σx,1/σx,2 σej

2 βj Power

1 200, 200 .10, .60 .81 2/2 = 1 2/2 = 1 4.41, 3.15 .09, .54 .998
2 200, 200 .10, .60 .81 2/2 = 1 2/4 = .5 4.41, 3.15 .09, .27 .678
3 200, 200 .10, .60 .81 2/4 = .5 2/2 = 1 4.41, 12.59 .09, 1.08 1.000
4 200, 200 .10, .60 .81 2/4 = .5 2/4 = .5 4.41, 12.59 .09, .54 .994
5 200, 200 .10, .60 .81 2/2 = 1 2/1 = 2 4.41, 3.15 .09, 1.08 1.000
6 200, 200 .10, .60 .81 2/1 = 2 2/2 = 1 4.41, .79 .09, .27 .645
7 200, 200 .10, .60 .81 2/1 = 2 2/1 = 2 4.41, .79 .09, .54 .988
8 105, 70 .10, .40 .64 2/2 = 1 2/2 = 1 4.97, 4.49 .08, .32 .341
9 105, 70 .10, .40 .64 2/2 = 1 2/4 = .5 4.97, 4.49 .08, .16 .109

10 105, 70 .10, .40 .64 2/4 = .5 2/2 = 1 4.97, 17.95 .08, .64 .681
11 105, 70 .10, .40 .64 2/4 = .5 2/4 = .5 4.97, 17.95 .08, .32 .287
12 105, 70 .10, .40 .64 2/2 = 1 2/1 = 2 4.97, 4.49 .08, .64 .582
13 105, 70 .10, .40 .64 2/1 = 2 2/2 = 1 4.97, 1.12 .08, .16 .065
14 105, 70 .10, .40 .64 2/1 = 2 2/1 = 2 4.97, 1.12 .08, .32 .108

Note.nj = sample size in each moderator-based subgroup (i.e., total sample size = n1 + n2);ρj = cor-
relations between X and Y for each moderator-based subpopulation; αy = reliability for Y and αx =
reliability for X; σy,1 and σy,2 = true score standard deviation for Y for moderator-based
Subpopulations 1 and 2, respectively; σx,1 and σx,2 = true score standard deviation for X for moderator-
based Subpopulations 1 and 2, respectively; σej

2 = error variance for each moderator-based
subpopulation computed using Equation C1; βj = slope of Y on X for each moderator-based
subpopulation computed using Equation A6; power = power approximate using Theorem 2 as im-
plemented by the program MMRPOWER. Power values were approximated using a preset nomi-
nal Type I error = .05. It is assumed that T = 0 (T = proportion of X scores that cannot be included in
the sample). Also, it is assumed that X has an underlying normal distribution (results based on an
arbitrary X distribution were identical because T was set at 0, that is, no restriction on X ).



two most important factors affecting power. However, the effects of reliability and
restriction are similar in magnitude. That is, improving one or the other factor yields
similar gains in power.

An additional conclusion can be drawn from Table 5. Aguinis and Stone-Romero
(1997) concluded that the power function is nonlinear. Table 5 (and additional tables
and graphs available from the authors on request) shows further that the pattern of
nonlinearity depends on the factor that is varied as well as the magnitude of the change
in the values of the factors manipulated.

Table 6 shows the effects on power of heterogeneity of X and Y variance across
moderator-based subpopulations. As in Table 5, to make the various comparisons eas-
ier to understand, we present a situation in which there are two moderator-based sub-
groups (e.g., gender). Also, we assume no restriction on X (i.e., T = 0 for the normal
case and variance multiplying factor = 1.00 for the arbitrary distribution). In addition,
because the effects of reliability of X and Y are symmetrical when X and Y reliabilities
are homogeneous across moderator-based subgroups, we varied the product αyαx and
not the reliability for each variable. Finally, we also held αyαx constant across the two
subgroups.

Case 1 in Table 6 shows what could be labeled an optimal case for detecting a mod-
erating effect. Sample size is large (i.e., 400) and equal across moderator-based sub-
groups, there is a .50 difference in the X – Y correlations between the subpopulations,
reliabilities for X and Y are .90 for each of the subgroups, and variances for X and Y are
identical across the subpopulations. More important, because it is the variance ratios
that have an impact on power (holding all other variables constant) rather than the
absolute variance values, the ratios are σy,1/σy,2 = σx,1/σx,2 = 1.00. Finally, the error vari-
ances are homogeneous, and their ratio is 1.40 (DeShon & Alexander, 1996, con-
cluded that error variances are homogeneous if the ratio of the largest to the smallest
variance is less than 1.50; see Aguinis & Pierce, 1998a, for a review of effects of error
variance heterogeneity on the power of MMR). Not surprisingly, given these optimal,
and perhaps rare, conditions, the power of MMR is .998.

In Cases 2 through 4 in Table 6, we systematically varied the σy,1/σy,2 and σx,1/σx,2

ratios to include values of 0.5, 1.0, and 2.0 and held all other variables identical to the
optimal Case 1. Thus, in Case 2 the ratios are σy,1/σy,2 = 1.0 and σx,1/σx,2 = 0.5; in Case 3
the ratios are σy,1/σy,2 = 0.5 and σx,1/σx,2 = 1.0; and in Case 4 the ratios are σy,1/σy,2 = 0.5
and σx,1/σx,2 = 0.5. Note that as X and Y variances change, so do error variances and
slopes. In Cases 5 through 7, we varied the X and Y variance ratios in an identical fash-
ion as compared to Cases 2 through 4 but replaced each 0.5 ratio with a 2.0 ratio. Taken
together, Cases 1 through 7 show that even when other conditions are optimal for the
detection of a moderating effect with respect to reliability, sample size, and differences
in correlations, heterogeneity of variance across subgroups can be detrimental to
power. Some patterns of variance heterogeneity lead to a decrease in differences in
slopes and, consequently, a decrease in power. For instance, Case 6 shows that despite
the fact that X variances are identical across subpopulations, a 2:1 ratio regarding Y
variance leads to a power of .645 as compared to a power of .998 when the Y variances
are identical. This effect is particularly noteworthy given that a 2:1 ratio of variances
might not be perceived by most researchers as posing a serious threat to MMR-based
conclusions. Nevertheless, the decrease in power is substantial.

Case 8 in Table 6 shows what could be labeled an average situation for detecting a
moderating effect. Total sample size is 175, sample sizes are moderately different
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across subgroups, X – Y correlations are .10 and .40 across the two subpopulations, and
reliabilities for X and Y are assumed to be .80 for each subgroup. Note, however, that in
Case 8 the X and Y variances take on the optimal value such that they are identical
across the subpopulations. Moreover, the ratio of error variances is also optimal. The
ratio is 1.11, which is less than the 1.50 rule of thumb recommended to decide whether
error variances are heterogeneous (DeShon & Alexander, 1996). This average situa-
tion yielded a power value of .341 (note that power is higher than the .203 value for the
average situation in Case 6 in Table 5 because in Table 6 it is assumed that there is no
restriction on X ). Once again, as illustrated in Table 5, this shows that numerous, if not
most, hypothesis tests using MMR are prone to Type II errors (i.e., incorrectly failing
to reject a false null hypothesis).

Next, in Cases 9 though 14 in Table 6, we replicated the pattern of X and Y variance
ratios used for Cases 2 through 7 to investigate the impact of the variance ratios on the
power of this average situation. For instance, Case 10 shows that increasing Y variance
heterogeneity can increase power, even when there is error variance heterogeneity.
Taken together, power values shown in Cases 9 through 14 reinforce a conclusion
reached by DeShon and Alexander’s (1996) empirical study: Error variance can lead
to increases or decreases in power because Type I error rates are not fixed at their preset
nominal level (.05 in this case). Most notably, Cases 9 through 14 illustrate the impact
of variance heterogeneity on slope differences and, in turn, on power. For instance,
Cases 10 and 13 provide a clear example. Both cases are identical. The only difference
is that for Case 10, σy,1/σy,2 = .5, whereas for Case 13, σy,1/σy,2 = 2.0. This difference in Y
variances led to power = .681 for Case 10 and power = .065 for Case 13. In short, what
might be considered small differences in Y variances across subpopulations can have
dramatic effects on power.

There is an important point that should be emphasized regarding the effects of error
variance heterogeneity in MMR. Results based on MMR cannot be trusted in the pres-
ence of error variance heterogeneity because Monte Carlo studies as well as the ana-
lytic approximation have demonstrated that MMR’s F test does not control Type I
error at the nominal rate when error variances are heterogeneous (Aguinis et al., 1999;
Aguinis & Pierce, 1998a). Depending on population and sample characteristics, vio-
lating the homogeneity of error variance assumption (a) increases or decreases Type I
error rates (e.g., a researcher mistakenly concludes that a moderating effect exists),
and (b) increases or decreases Type II error rates (i.e., a researcher mistakenly con-
cludes that a moderating effect does not exist). For instance, regarding Type I error,
Dretzke, Levin, and Serlin (1982) showed that error rates are artificially inflated when
sample sizes are unequal across subgroups, and this is most noticeable when the
smaller subgroup sample size is paired with the larger error variance. Regarding Type
II error, Alexander and DeShon (1994) found that error rates increase (i.e., statistical
power is lowered) when the subgroup with the larger sample size is associated with the
larger error variance (see Aguinis & Pierce, 1998a, for a review). Because of the Type I
and Type II error rate problems due to heterogeneity of error variance, Aguinis et al.
(1999) developed the computer program ALTMMR (available at http://members.aol.
com/imsap/altmmr.html) to allow MMR users to (a) assess whether error variances are
homogeneous, and (b) compute alternatives to MMR’s F test if they are heteroge-
neous. Thus, we suggest that, after data have been collected, researchers use
ALTMMR to check whether the homogeneity of error variance assumption is satisfied
before proceeding to conduct an MMR analysis.
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The present analytic solution to computing the power of MMR does not solve the
problem that the F statistic does not have an F distribution when the homogeneity of
error variance assumption is violated. MMR’s results about whether H0 should be
rejected cannot be trusted when error variances are heterogeneous, and this is a prob-
lem associated with MMR and not with the present analytic solution. In fact, results
show that power values generated using the analytic solution are virtually identical to
those generated empirically, even when error variances are heterogeneous. The algo-
rithm and program yield accurate power rates, but when the assumption is violated,
these power rates correspond to a test whose size differs from the nominal α. In short,
when error variances are heterogeneous, MMR results cannot be trusted, and MMR
should not be used (Aguinis et al., 1999).

An additional contribution of the present analytic solution is that MMRPOWER
can also be used to approximate the actual α, as well as learn about the deviation of the
actual α from the nominal α given a violation of the homogeneity of error variance
assumption. To do this, users would first select identical slopes for the modera-
tor-based subgroups and then input various combinations of values for the factors
known to cause a violation of the assumption (e.g., sample sizes, standard deviations).

MMRPOWER issues a caution statement in situations when H0 is true and the
actual α differs from the preset nominal α, and MMRPOWER’s output includes each
group’s error standard deviation (i.e., “W-Group Error SD”). The same caution state-
ment is issued for any contrasts if the contrast H0 is true and error variances are hetero-
geneous. In such situations, MMRPOWER outputs the following message:

The null hypothesis is true, but the actual significance level of the test is α′ [a numeric
value is shown on the screen]. To obtain a new test with actual significance equal to
0.05000 set the nominal alpha to α“ [a numeric value is shown on the screen]. The
adjusted critical F value is F [a numeric value is shown on the screen].

The ease with which power values are generated using the present analytic solution
as implemented by the program MMRPOWER also has practical research value. More
precisely, generating power values for various hypothetical scenarios can aid research-
ers in making decisions about study design and allocating their research resources. For
instance, assume a typical situation in which research resources are limited. Also, as-
sume that a researcher is planning a study including a self-report survey and has a
choice between two sets of measures for X and Y. Based on the previous use of these
measures, the first set would lead to αyαx = .81 (i.e., αy = αx = .90), and these are paper-
and-pencil instruments that take about 40 minutes to be completed. The second set of
measures would lead to αyαx = .60 (i.e., αy = .80 and αx = .75), and these instruments
take approximately 20 minutes to be completed. Assume that past research shows that,
because of the difference in time and effort involved in completing the measures, using
the second set of measures improves response rate by about 15%. Should this re-
searcher attempt to increase N by using the second set of measures or, alternatively,
should this researcher use the first set of measures so as to have less measurement error
in X and Y scores? Which of the two study scenarios will lead to greater power in esti-
mating whether Z moderates the relationship between X and Y? What would be the re-
sulting power value if αyαx decreases from .81 to .60 (i.e., by using the second set of
measures) but total sample size increases from 200 to 230 (i.e., a 15% increase)? With
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MMRPOWER, these questions can be answered via the analytic approximation to
compute power for each of the anticipated situations.

Conclusion

MMR is a pervasively used statistical technique to estimate and test effects of cate-
gorical moderator variables in organization studies and the social sciences in general.
Despite its popularity, researchers often express the concern that the power of MMR is
inadequate to test hypotheses regarding the operation of moderating effects. Theorem
2 in Appendix C offers an analytic synthesis of factors affecting the power of MMR.
Results of our Monte Carlo simulation indicate that Theorem 2 is accurate at approxi-
mating the power of MMR under a very diverse set of conditions including, among
other factors, heterogeneity of variance of X, heterogeneity of variance of Y, and heter-
ogeneity of reliabilities across moderator-based subgroups. We also developed the
computer program MMRPOWER that implements the algorithm shown in Theorem 2.
MMRPOWER can be used to study further the effects of violating certain assumptions
on the power of MMR. Using MMRPOWER with values typically encountered in
research situations in which MMR is used yielded power values substantially below
Cohen’s (1988) recommended .80 value. Thus, it is likely that conclusions of many
past studies that used MMR and did not find support for a hypothesized categorical
moderator variable were actually the product of a Type II error (i.e., inability to cor-
rectly reject a false null hypothesis). In closing, we encourage researchers to approxi-
mate power while planning their research design (e.g., sample size) and methodology
(e.g., reliability of measurement). By doing so, researchers will make more informed
conclusions about hypotheses entailing moderating effects of categorical variables.

APPENDIX A
Assumptions

We consider two cases. In Case 1, the continuous criterion variable Y and the continuous
predictor X are assumed to follow a bivariate normal distribution within each categorical
moderator-based subpopulation. In Case 2, the conditional distribution of Y given X = x is as-
sumed to be normal within each moderator-based subpopulation, but the marginal distributions
of X are arbitrary.

True Scores and Error

For Cases 1 and 2, it is assumed that the observable random variables X and Y can be decom-
posed as the sum of two statistically independent components, namely, true scores and error.
That is,

Y

X

Y

X
y

x









 = 







 +









true

true

ε
ε

, (A1)

where Xtrue and Ytrue are true scores and εy and εx are random errors. Denote the k subpopulations by
P1, P2,…Pk. Then, the expectation and covariance matrix corresponding to the true scores in
subpopulation j can be written as
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(A2)

where the notation |Pj means that the result is specific to subpopulation j; ρj is the correlation
between Xtrue and Ytrue in subpopulation j; and σx,j and σy,j are the Xtrue and Ytrue population standard
deviations.

The random errors εy and εx are assumed to be distributed independently of one another.
Specifically,

εy | Pj ~ N( , )0 σε
2

y, j
and εx | Pj ~ ( , )

,
0 σε

2
x j

. (A3)

Note that εy is assumed to be normally distributed, whereas only the first two moments, but
not the distribution of εX, is specified in Equation A3. In Case 1, it is assumed that εX is normally
distributed, but in Case 2, the distribution of εX is arbitrary.

It follows from Equations A1, A2, and A3 that the vector of observable scores has the follow-
ing expectation and covariance matrix:
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Accordingly, the reliabilities of X and Y are

αx, j =
σ

σ σε

x j

x j x j

,

, ,

2

2 2+
and αy, j =

σ
σ σε

y j

y j y j

,

, ,

2

2 2+
,

respectively.

Case 1: Bivariate Normal Distribution for (Y, X )

In Case 1, it is assumed that the vector of true scores as well as the vector of random errors
follow bivariate normal distributions. That is,

Y
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(A5)

where µj and Σtrue, j are given in Equation A2. It follows from Equations A1 and A5 that the vector
of observable scores also follows a bivariate normal distribution:

Y

X
Pj









 ~ N (�j, �j),

where µj is given in Equation A2, and Σj is given in Equation A4.
Using standard conditioning arguments, it can be shown that if the pair (Y, X) is randomly

drawn from population j, then the distribution of Y conditional on X = x is the following:
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where

β0j = µy,j – µx, jβ1j and β1j = ρjαx, j
σ
σ

,

,

y j

x j

.

Case 2: Arbitrary Distribution for X

In Case 2, the distributions of Xtrue, εx, and X are arbitrary, provided that the moments in Equa-
tions A2 and A3 exist. No specific marginal distributions are assumed for either Ytrue or Y, but it is
assumed that Y is conditionally normal given X = x. Specifically, it is assumed that the regression
model in Equation A6 holds.

APPENDIX B
Testing Hypotheses Regarding Moderating Effects

In testing moderating effect hypotheses a sample of nj pairs is randomly selected from the jth
population, for j = 1, . . . , k. These selections may be made completely at random, or they may be
made according to a restricted random process. In any case, it is assumed that conditional on X =
x, the probability of selecting the pair (Y, X) is independent of Y. If this assumption is satisfied,
then the conditional distribution of Y given X = x for sampled pairs (Y, X) is identical to the condi-
tional distribution of Y given X = x in the entire population (i.e., Eq. A6). One simple example of
this type of restricted sampling is truncation on X. That is, selection could be random subject to
the restriction that each (Y, X) pair in sample j satisfies X ≥ x j

* or X ≤ x j
*, where x j

* is a fixed lower
or upper cutoff.

Null Hypothesis

To test the moderating effect hypotheses shown in Equation 1, one tests the hypothesis H0:
β11 = β12 = . . . = β1k. This hypothesis is equivalent to

H0: ρ1αx,1
σ
σ

,

,

y

x

1

1

= ρ2αx,2
σ
σ

,

,

y

x

2

2

= . . . = ρkαx,k
σ
σ

,

,

y k

x k

.

However, as reviewed by Aguinis and Pierce (1998a), a false null hypothesis could be attribut-
able to heterogeneity among the correlations, the X variances, the Y variances, and/or the X
reliabilities.

Denote the k × 1 vector of slope parameters by �1. That is,
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A vector of moderating effects can be obtained by computing contrasts among the entries of β1.
Specifically, let C be a k × (k – 1) matrix of contrast coefficients with entries cij for i = 1, . . . , k and
j = 1, . . . , k – 1 defined as follows:
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For example, if k = 4, then
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Using this matrix notation, the vector of moderating effects is C′�1. For convenience, the vector
slope differences, C′�1, will be denoted by �. That is,
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In short, the null hypothesis can be written either as H0: C′β1 = 0 or as H0: ψ = 0. (Note that
one-degree-of-freedom contrasts also could be tested as opposed to an omnibus test given that a
theory-based hypothesis exists regarding differences between/among specific groups; West,
Aiken, & Krull, 1996.)

Conventional MMR Model

For convenience, the total sample size, Σ j
k

=1 nj is denoted by N. In addition, the partial sum
Σg

j
=1 ng is denoted by Nj, for j = 1, . . . , k; and N0 is defined as zero. That is, N0 = 0; N1 = n1; N2 = n1 +

n2, and so forth up to Nk = N. The pooled sample of pairs is (Yi, Xi) for i = 1, . . . , N, and the sample
of size nj from population j is (Yi, Xi) for i = 1 + Nj – 1, 2 + Nj – 1, . . . , Nj.

The moderator variable Z can take on the values 1, 2, . . . , k. The value of Z indicates the
subpopulation from which a (Y, X) pair was drawn. That is, if the pair (Yi, Xi) was drawn from
subpopulation j, then zi = j. For each zi, a set of k – 1 binary indicator variables, wij for j = 1, . . . , k –
1, can be defined as follows:

wij =
1

0

if

otherwise.

z ji =



;
(B2)
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In the special case of a binary moderator variable (i.e., k = 2), the subscript j on wij can be omitted,
and the binary indicator variable, wi, simplifies to

wi =
1 1

0 2
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if
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;

.

The conventional MMR model for (Yi, Xi), i = 1, . . . , N can be written as follows:

Yi = β0 + β1xi = wij
j
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1

1

xiψj + εi, (B3)

where wij is defined in Equation B2, and the parameters of the MMR model are functions of the
parameters of the conditional distributions in Equation A6. Specifically,

β0 = β0k; β1 + β1k; τj = β0j – β0k for j = 1, . . . , k – 1; and

ψj = β1j – β1k for j = 1, . . . , k – 1.

Also, εi for i = 1, . . . , N are independently distributed random errors. The random error terms are
independently distributed as

εi|Pj ~ N 0 1
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for i = 1 + Nj-1, 2 + Nj-1, . . . , Nj.

F Test

The conventional MMR F test for moderating variable effects is to reject H0 if Fx ≥ Fk N k− −
−
1 2

1
,
α ,

where Fx is the computed value of the test statistic, and Fk N k− −
−
1 2

1
,
α is the critical value for a size α

test. The subscript x on Fx is a reminder that the test is conducted conditional on X = x. The test
statistic can be computed as follows:
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where C is defined in Equation B1; �� is the ordinary least squares estimator of � in the MMR
model (Eq. B3);

Dx = Diag(SSX j
−1; j = 1, . . . , k);
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;

Diag(aj; j = 1, . . . , k) is a diagonal matrix given by
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;

SSE is the sum of squared errors from the least squares fit of the MMR model (Eq. B3), and SSEj

for j = 1, . . . , k is the sum of squared errors from the least squares fit of the parameters in the jth
conditional model described in Equation A6.

APPENDIX C
Distribution of the Test Statistic Conditional on X and

Approximation to the Unconditional Distribution of the Test Statistic

Distribution of the Test Statistic Conditional on X

In general, the test statistic Fx will not be distributed as an F random variable. Under the
model shown in Equation A6, the condition that must be satisfied for Fx to follow an F distribu-
tion is homogeneity of the conditional variances of Y given X (Aguinis & Pierce, 1998a). This
homogeneity condition can be written as follows:

σ
α

y j

y j

,

,

2

(1 – ρ j
2αx, jαy, j) = σ2 for j = 1, . . . , k, (C1)

where σ2 is a positive constant. If the homogeneity condition is not satisfied, then the Fx is not
distributed as an F random variable. Nonetheless, the exact distribution of Fx, conditional on X,
can be obtained by using well-known linear models theory (e.g., Stapleton, 1995). The result is
summarized in Theorem 1.

Theorem 1: Conditional Distribution of Fx

Define Vx as

Vx = Diag
σ ρ α α

α
y j j x j y j

y j jSSX
j k, , ,

,

( )
; ,...,

2 21
1

−
=





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





and denote the eigenvalues and eigen-vectors of (C′DxC)-1 C′VxC by ωx,j and ux,j, respectively.
That is,

(C′DxC)-1 C′VxCux, j = ux, jωx, j

for j = 1, . . . , k – 1. The distribution of Fx, conditional on X, is
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where Gx,j for j = 1, . . . , k – 1 and Hj for j = 1, . . . , k are independently distributed chi-squared ran-
dom variables. Specifically, Hj ~ χ2(nj – 2) for j = 1, . . . , k and Gx,j ~ χ2(1, λx,j) for j = 1, . . . , k – 1,
where λx,j is a noncentrality parameter and is given by
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In the special case of a binary moderator variable, the conditional distribution of Fx simplifies
substantially. In this special case, k – 1 = 1;
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Conditional on the X variable, the power of the moderating effect tests is given by

Powerx = Pr(Fx ≥ Fk N k− −
−
1 2

1
,
α ). (C2)

Approximation to the Unconditional
Distribution of the Test Statistic

To obtain the unconditional power of the F test, the conditional power in Equation C2 must
be averaged over all possible realizations of the X variable. That is, the unconditional power of
the F test is

Power = E(Powerx), (C3)

where Powerx is given in Equation C2, and the expectation is taken with respect to the distri-
bution of X. Exact analytic expressions for the unconditional power are not known. Accord-
ingly, the unconditional power must be approximated.

The X variable plays a role in the conditional power solely through SSXj for j = 1,…, k. The
strategy for the proposed approximation is straightforward. First, for each j, replace 1/SSXj by its
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expectation. Second, use Theorem 1 and act as though 1/SSXj = E(1/SSXj) for j = 1, . . . , k. This
strategy is equivalent to expanding the unconditional power in Equation C3 in a Taylor series
around 1/SSXj = E(1/SSXj) for j = 1, . . . , k and truncating the series after the linear term. With an
error of order nj

−2, the expectation of 1/SSXj is

E
E

1 1

1SSX

n

n SSXj

j

j j











 =

+
−( ) ( )

.

The relationship between E(SSXj) and σx j,
2 depends on the reliability of X in subpopulation j

and on the manner in which (Y, X) pairs were selected from the jth subpopulation. Let Q be a ran-
dom variable that takes on the value Q = 1 if the pair (Y, X) can be selected from the population
and takes on the value Q = 0 if the pair (Y, X) cannot be selected from the population. If the (Y, X)
pairs are a simple random sample from the jth population, then Q = 1 for all pairs, and

E S S
SSX

n
x j

x j

x j
x j

j

j

( ) ,,

,

2
2

2

1
= =

−
σ
α

where

is the sample variance of X in the jth sample. If the probability of selecting the pair (Y, X) de-
pends on X, then

E(Sx j

2 ) =
σ δ
α
x j j

x j

,

,

2

for j = 1, . . . , k; where δj =
Var

Var

( , )

( )

X P Q

X P

j

j

= 1
. (C4)

The quantity δj is a multiplying factor that depends on the distribution of X and on the manner in
which selection probabilities depend on X.

If sampling is restricted by left truncation on X, then

Q
X x j= ≥




1

0

if and

otherwise.

* ,

If the distribution of X is known, then, for this simple form of restricted sampling, the multiplying
factor δj can be computed explicitly. For example, if X is normally distributed, then (using mo-
ment generating functions) the multiplying factor can be shown to be

δj = 1 +
ϕ ϕ( ) ( )h

T
h

h

T
j

j
j

j

j1 1−
−

−










 ;

where ϕ is the probability density function of the standard normal distribution, hj = α x j, (
x j

* – µx,j)/σx,j; and Tj is the truncation proportion for subpopulation j. That is, the sample con-
sists of pairs (Y, X) that are randomly selected from all pairs in population j for which X lies
in the upper or lower 100[1 – Tj]% of the distribution.

In the simple case of normally distributed X and left truncation, the multiplying factor δj al-
ways is less than or equal to 1.00. In other cases, δj can be less than, equal to, or greater than 1.00.
For example, suppose that the density function of X in subpopulation j is fx(x). Consider the se-
lection mechanism

318 ORGANIZATIONAL RESEARCH METHODS



Prob(Q = 1|X = x) = F xx

T

T( )1− , where Fx(x) = fx

x

−∞∫ (u)du

is the cumulative distribution function of X, and T is a constant in (0, 1). With this selection
mechanism, the probability of selection gradually increases as X increases. This selection
mechanism is a continuous version of left truncation, and it will be called sparse left sam-
pling. It can be shown that E[Prob(Q = 1|X)] = 1 – T. That is, the percentage of the distribu-
tion that cannot be sampled is 100T%. The value of T, therefore, is analogous to the trunca-
tion proportion discussed above. The conditional density of X given Q = 1 is

fx Q(x|Q = 1) =
1

1− T
fx x

T

Tx F x( ) ( )1− .

To compute δj, the density function fx(x)must be known. As an example, suppose that X fol-
lows an exponential distribution in subpopulation j. That is, the density function is

fX(x|λ) = λ λe x− , for 0 < x < ∞.

It can be shown that δj increases from δj = 1 to δj = 1.645 as the “truncation proportion” (i.e., T )
increases from 0 to 1. That is, the sample variances tend to be inflated, and the degree of inflation
increases as T increases.

In sparse right sampling, the probability of selection is high for low X scores, and it decreases
as X increases. The probability of selection in sparse right sampling is

Prob(Q = 1|X = x) = [1 – F xx

T

T( )]1− .

If an exponential distribution (in subpopulation j) is subjected to sparse right sampling, then
δj decreases from δj = 1.00 to δj = 0.00 as T increases from 0.00 to 1.00. If the selection
mechanism is changed to the left truncation mechanism,

Prob(Q = 1|X = x) =
1

0

if andx x

x x

>
<







*

*

,
,

then for the exponential distribution, δj = 1 regardless of the cutoff value x*. In summary, if X
follows an exponential distribution, then δj = 1, δj < 1, or δj > 1 depending on the sampling
mechanism.

Next, Theorem 2 summarizes the power approximation obtained by making the required
substitutions.

Theorem 2: Unconditional Power Approximation

The power of the MMR F test is

Power ≈ Pr
k

N k
F Hk N k

y j j x j−
−



 




−
− −
−1

2

1
1 2

1
2 2

,
, ,( )α σ ρ α α

α
y, j

y, j
j j j

j

k

j

k

G− ≤










=

−

=
∑∑ ω 0

1

1

1

,

where ωj is the jth eigenvalue of (C′DC)-1 C′VC;
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D = Diag
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δ σ
,x j

j x j
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− +
−

y, j
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=



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


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

1, ,� k ;

and Gj for j = 1, . . . , k – 1 and Hj for j = 1, . . . , k are independently distributed chi-squared
random variables. Specifically, Hj ~ χ2(nj – 2) for j = 1, . . . , k and Gj ~ χ2(1, λj) for j = 1, . . . ,
k – 1, where λj is a noncentrality parameter;

λj =
( )′ ′

′ ′
u C

u C VCu
j

j j

�1
2

2
;

and uj is the jth eigen-vector of (C′DC)-1 C′VC.
The accuracy of the approximation in Theorem 2 increases as each nj increases. Also, for any

fixed sample size, the approximation is most accurate if the standardized kurtosis coefficients of
the X variable are near zero (i.e., normal kurtosis) in each subpopulation.

Notes

1. We acknowledge that there is also a contrary view. For instance, Luce (1995) stated that

evidence of interactions is usually a signal of trouble. . . . All too often, in my opinion,
the interactions are treated as a finding and not as evidence of a lack of understanding
of the combining rule for measures of the independent variables. (p. 21)

However, as noted by Aguinis (in press), Aguinis and Pierce (1998c), Aguinis and White-
head (1997), and others (e.g., Hall & Rosenthal, 1991), it is the theory-based interaction effects
that are “at the very heart of the scientific enterprise” (Hall & Rosenthal, 1991, p. 447). Alterna-
tively, unexpected and/or unanticipated interaction effects can be problematic. They might lead
to a meaningful discovery or simply indicate that the conception of the research question and/or
design is incorrect.

2. Increasing sample size across subgroups is related but not equivalent to reduction of vari-
ance in the categorical predictor Z. An increase in sample size can result in a decrease or an in-
crease in the variance of Z. For example, if Z is a categorical moderator that takes on values of 1
and 2, the sample variance of Z is

S
Z Z

N

Np p

N
z

i2
2

1

1

1
= −

−
= −

−
Σ( ) ( )

,

where N = n1 (i.e., sample size in Subgroup 1) + n2 (i.e., sample size in Subgroup 2), and p = n1/N.
As an illustration, if n1 = 10 and n2 = 40, then the sample variance is 8/49 = .1636. If n1 is in-
creased to 40, then the sample variance is 20/79 = .253 (i.e., an increase). If n1 remains at 10 and
n2 is increased to 50, then the sample variance is 25/177 = .1412 (i.e., a decrease).

3. Note, however, that the computer program MMRPOWER that implements the analytic ap-
proximation allows for the inclusion of up to 20 levels or moderator-based subgroups (i.e., k ≤
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20). Tables showing results for conditions 4 ≤ k ≤ 20 are available from the authors. The pattern
of results was similar to those reported herein for conditions 2 ≤ k ≤ 3.

References

Aguinis, H. (1995). Statistical power problems with moderated multiple regression in manage-
ment research. Journal of Management, 21, 1141-1158.

Aguinis, H. (in press). Estimation of sampling variance of correlations in meta-analysis. Person-
nel Psychology.

Aguinis, H., Beaty, J. C., Boik, R. J., & Pierce, C. A. (2000, April). Statistical power of differen-
tial prediction analysis: A 30-year review. In F. L. Oswald (Chair), Differential prediction in
personnel selection: Past, present, and future. Symposium conducted at the meeting for the
Society of Industrial and Organizational Psychology, New Orleans, LA.

Aguinis, H., Bommer, W. H., & Pierce, C. A. (1996). Improving the estimation of moderating ef-
fects by using computer-administered questionnaires. Educational and Psychological
Measurement, 56, 1043-1047.

Aguinis, H., Nesler, M. S., Quigley, B. M., Lee, S., & Tedeschi, J. T. (1996). Power bases of fac-
ulty supervisors and educational outcomes for graduate students. Journal of Higher Educa-
tion, 67, 267-297.

Aguinis, H., Petersen, S. A., & Pierce, C. A. (1999). Appraisal of the homogeneity of error vari-
ance assumption and alternatives to multiple regression for estimating moderating effects
of categorical variables. Organizational Research Methods, 2, 315-339.

Aguinis, H., & Pierce, C. A. (1998a). Heterogeneity of error variance and the assessment of
moderating effects of categorical variables: A conceptual review. Organizational Research
Methods, 1, 296-314

Aguinis, H., & Pierce, C. A. (1998b). Statistical power computations for detecting dichotomous
moderator variables with moderated multiple regression. Educational and Psychological
Measurement, 58, 668-676.

Aguinis, H., & Pierce, C. A. (1998c). Testing moderator variable hypotheses meta-analytically.
Journal of Management, 24, 577-592.

Aguinis, H., Pierce, C. A., & Stone-Romero, E. F. (1994). Estimating the power to detect dichot-
omous moderators with moderated multiple regression. Educational and Psychological
Measurement, 54, 690-692.

Aguinis, H., & Stone-Romero, E. F. (1997). Methodological artifacts in moderated multiple re-
gression and their effects on statistical power. Journal of Applied Psychology, 82, 192-206.

Aguinis, H., & Whitehead, R. (1997). Sampling variance in the correlation coefficient under in-
direct range restriction: Implications for validity generalization. Journal of Applied Psy-
chology, 82, 528-538.

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions.
Newbury Park, CA: Sage.

Alexander, R. A., & DeShon, R. P. (1994). Effect of error variance heterogeneity on the power of
tests for regression slope differences. Psychological Bulletin, 115, 308-314.

Bobko, P., & Russell, C. J. (1994). On theory, statistics, and the search for interactions in the or-
ganizational sciences. Journal of Management, 20, 193-200.

Boik, R. J. (1979). Interactions, partial interactions and interaction contrasts in the analysis of
variance. Psychological Bulletin, 86, 1084-1089.

Boik, R. J. (1993). The analysis of two-factor interactions in fixed effects linear models. Journal
of Educational Statistics, 18, 1-40.

Brown, P. J., & Fuller, W. A. (Eds.). (1990). Statistical analysis of measurement error models
and applications. Providence, RI: American Mathematical Society.

Aguinis et al. / MODERATOR VARIABLES 321



Busemeyer, J. R., & Jones, L. E. (1983). Analysis of multiplicative combination rules when the
causal variables are measured with error. Psychological Bulletin, 93, 549-562.

Carroll, R. J., & Ruppert, D. (1995). Measurement error in nonlinear models. New York:
Chapman & Hall.

Casella, G., & Berger, R. L. (2002). Statistical inference (2nd ed.). Belmont, CA: Duxbury.
Cleary, T. A. (1968). Test bias: Prediction of grades of Negro and White students in integrated

colleges. Journal of Educational Measurement, 5, 115-124.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ:

Lawrence Erlbaum.
Cohen, J., & Cohen, P. (1983). Applied multiple regression/correlation analysis for the behav-

ioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.
DeShon, R. P., & Alexander, R. A. (1996). Alternative procedures for testing regression slope

homogeneity when group error variances are unequal. Psychological Methods, 1, 261-277.
Dretzke, B. J., Levin, J. R., & Serlin, R. C. (1982). Testing for regression homogeneity under

variance heterogeneity. Psychological Bulletin, 91, 376-383.
Gatsonis, C., & Sampson, A. R. (1989). Multiple correlation: Exact power and sample size cal-

culations. Psychological Bulletin, 106, 516-624.
Hall, J. A., & Rosenthal, R. (1991). Testing for moderator variables in meta-analysis: Issues and

methods. Communication Monographs, 58, 437-448.
Jaccard, J., & Wan, C. K. (1995). Measurement error in the analysis of interaction effects be-

tween continuous predictors using multiple regression: Multiple indicator and structural
equation approaches. Psychological Bulletin, 117, 348-357.

Luce, R. D. (1995). Four tensions concerning mathematical modeling in psychology. Annual
Review of Psychology, 46, 1-26.

Mason, C. H., & Perreault, W. D. (1991). Collinearity, power, and interpretation of multiple re-
gression analysis. Journal of Marketing Research, 28, 268-280.

McClelland, G. H., & Judd, C. M. (1993). Statistical difficulties of detecting interactions and
moderator effects. Psychological Bulletin, 114, 376-390.

Murphy, K. R. (1986). When your top choice turns you down: Effect of rejected offers on the
utility of selection tests. Psychological Bulletin, 99, 133-138.

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (2nd ed.). New York:
McGraw-Hill.

Saunders, D. R. (1956). Moderator variables in prediction. Educational and Psychological
Measurement, 16, 209-222.

Smith, K. W., & Sasaki, M. S. (1979). Decreasing multicollinearity: A method for models with
multiplicative functions. Sociological Methods and Research, 8, 35-56.

Stapleton, J. H. (1995). Linear statistical models. New York: John Wiley.
Stone-Romero, E. F., Alliger, G. M., & Aguinis, H. (1994). Type II error problems in the use of

moderated multiple regression for the detection of moderating effects for dichotomous
variables. Journal of Management, 20, 167-178.

Stone-Romero, E. F., & Anderson, L. E. (1994). Relative power of moderated multiple regres-
sion and the comparison of subgroup correlation coefficients for detecting moderating ef-
fects. Journal of Applied Psychology, 79, 354-359.

West, S. G., Aiken, L. S., & Krull, J. L. (1996). Experimental personality designs: Analyzing
categorical by continuous variable interactions. Journal of Personality, 64, 1-48.

Zedeck, S. (1971). Problems with the use of “moderator” variables. Psychological Bulletin, 76,
295-310.

Herman Aguinis (http://www.cudenver.edu/~haguinis) is an associate professor of management at the Uni-
versity of Colorado at Denver. He received a Ph.D. in industrial/organizational psychology from the Univer-
sity at Albany, State University of New York. His current research interests include personnel selection, so-
cial power and influence, estimation of interaction effects, meta-analysis, and research methods.

322 ORGANIZATIONAL RESEARCH METHODS



Robert J. Boik (http://www.math.montana.edu/~rjboik) is a professor of statistics at Montana State Univer-
sity. He received a Ph.D. in experimental psychology from Baylor University and a Ph.D. in statistics from
Temple University. His current research interests include linear models, multivariate statistics, and
Bayesian methods.

Charles A. Pierce (http://www.montana.edu/wwwpy) is an associate professor of industrial/organizational
psychology at Montana State University. He received a Ph.D. in social psychology from the University at Al-
bany, State University of New York. His current research interests include workplace romance, sexual ha-
rassment, estimation of interaction effects, meta-analysis, and research methods.

Aguinis et al. / MODERATOR VARIABLES 323


